MakeItFrom.com
Menu (ESC)

C84500 Brass vs. SAE-AISI 5140 Steel

C84500 brass belongs to the copper alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
170 to 290
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 28
12 to 29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 240
560 to 970
Tensile Strength: Yield (Proof), MPa 97
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 150
420
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 72
45
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 17
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.1
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 340
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 45
220 to 1880
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.7
20 to 34
Strength to Weight: Bending, points 9.8
19 to 28
Thermal Diffusivity, mm2/s 23
12
Thermal Shock Resistance, points 8.6
16 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 77 to 79
0
Iron (Fe), % 0 to 0.4
97.3 to 98.1
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0.7 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.080
0 to 0.040
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0