MakeItFrom.com
Menu (ESC)

C84500 Brass vs. C14200 Copper

Both C84500 brass and C14200 copper are copper alloys. They have 78% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 28
8.0 to 45
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 39
43
Tensile Strength: Ultimate (UTS), MPa 240
220 to 370
Tensile Strength: Yield (Proof), MPa 97
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 150
200
Melting Completion (Liquidus), °C 980
1080
Melting Onset (Solidus), °C 840
1030
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 72
190
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
45
Electrical Conductivity: Equal Weight (Specific), % IACS 17
45

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 45
24 to 500
Stiffness to Weight: Axial, points 6.6
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.7
6.8 to 11
Strength to Weight: Bending, points 9.8
9.1 to 13
Thermal Diffusivity, mm2/s 23
56
Thermal Shock Resistance, points 8.6
7.9 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Arsenic (As), % 0
0.15 to 0.5
Copper (Cu), % 77 to 79
99.4 to 99.835
Iron (Fe), % 0 to 0.4
0
Lead (Pb), % 6.0 to 7.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0.015 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0