MakeItFrom.com
Menu (ESC)

C84500 Brass vs. C23400 Brass

Both C84500 brass and C23400 brass are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is C23400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 39
42
Tensile Strength: Ultimate (UTS), MPa 240
370 to 640

Thermal Properties

Latent Heat of Fusion, J/g 180
190
Maximum Temperature: Mechanical, °C 150
160
Melting Completion (Liquidus), °C 980
970
Melting Onset (Solidus), °C 840
930
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 72
120
Thermal Expansion, µm/m-K 19
19

Otherwise Unclassified Properties

Base Metal Price, % relative 28
27
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 47
43
Embodied Water, L/kg 340
320

Common Calculations

Stiffness to Weight: Axial, points 6.6
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.7
12 to 21
Strength to Weight: Bending, points 9.8
13 to 19
Thermal Diffusivity, mm2/s 23
36
Thermal Shock Resistance, points 8.6
12 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 77 to 79
81 to 84
Iron (Fe), % 0 to 0.4
0 to 0.050
Lead (Pb), % 6.0 to 7.5
0 to 0.050
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
15.7 to 19
Residuals, % 0
0 to 0.2