MakeItFrom.com
Menu (ESC)

C84800 Brass vs. ASTM B817 Type I

C84800 brass belongs to the copper alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84800 brass and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 18
4.0 to 13
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 230
770 to 960
Tensile Strength: Yield (Proof), MPa 100
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 150
340
Melting Completion (Liquidus), °C 950
1600
Melting Onset (Solidus), °C 830
1550
Specific Heat Capacity, J/kg-K 370
560
Thermal Conductivity, W/m-K 72
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 27
36
Density, g/cm3 8.6
4.4
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 46
610
Embodied Water, L/kg 340
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 53
2310 to 3540
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 7.3
48 to 60
Strength to Weight: Bending, points 9.6
42 to 49
Thermal Diffusivity, mm2/s 23
2.9
Thermal Shock Resistance, points 8.2
54 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.8
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 75 to 77
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.4
Lead (Pb), % 5.5 to 7.0
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 13 to 17
0
Residuals, % 0
0 to 0.4