MakeItFrom.com
Menu (ESC)

C84800 Brass vs. S31254 Stainless Steel

C84800 brass belongs to the copper alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C84800 brass and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 18
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
80
Tensile Strength: Ultimate (UTS), MPa 230
720
Tensile Strength: Yield (Proof), MPa 100
330

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 150
1090
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 72
14
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
28
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.8
5.5
Embodied Energy, MJ/kg 46
74
Embodied Water, L/kg 340
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
240
Resilience: Unit (Modulus of Resilience), kJ/m3 53
270
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.3
25
Strength to Weight: Bending, points 9.6
22
Thermal Diffusivity, mm2/s 23
3.8
Thermal Shock Resistance, points 8.2
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 75 to 77
0.5 to 1.0
Iron (Fe), % 0 to 0.4
51.4 to 56.3
Lead (Pb), % 5.5 to 7.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 0 to 1.0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 2.0 to 3.0
0
Zinc (Zn), % 13 to 17
0
Residuals, % 0 to 0.7
0