MakeItFrom.com
Menu (ESC)

C84800 Brass vs. S35500 Stainless Steel

C84800 brass belongs to the copper alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C84800 brass and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 18
14
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
78
Tensile Strength: Ultimate (UTS), MPa 230
1330 to 1490
Tensile Strength: Yield (Proof), MPa 100
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 150
870
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 72
16
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 27
16
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.5
Embodied Energy, MJ/kg 46
47
Embodied Water, L/kg 340
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 53
3610 to 4100
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.3
47 to 53
Strength to Weight: Bending, points 9.6
34 to 37
Thermal Diffusivity, mm2/s 23
4.4
Thermal Shock Resistance, points 8.2
44 to 49

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 75 to 77
0
Iron (Fe), % 0 to 0.4
73.2 to 77.7
Lead (Pb), % 5.5 to 7.0
0
Manganese (Mn), % 0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 1.0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 2.0 to 3.0
0
Zinc (Zn), % 13 to 17
0
Residuals, % 0 to 0.7
0