MakeItFrom.com
Menu (ESC)

C85200 Brass vs. 5059 Aluminum

C85200 brass belongs to the copper alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C85200 brass and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 28
11 to 25
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 270
350 to 410
Tensile Strength: Yield (Proof), MPa 95
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 180
390
Maximum Temperature: Mechanical, °C 140
210
Melting Completion (Liquidus), °C 940
650
Melting Onset (Solidus), °C 930
510
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 84
110
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
29
Electrical Conductivity: Equal Weight (Specific), % IACS 19
95

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 2.8
9.1
Embodied Energy, MJ/kg 46
160
Embodied Water, L/kg 330
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 42
220 to 650
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 8.9
36 to 42
Strength to Weight: Bending, points 11
41 to 45
Thermal Diffusivity, mm2/s 27
44
Thermal Shock Resistance, points 9.3
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.0050
89.9 to 94
Antimony (Sb), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 70 to 74
0 to 0.25
Iron (Fe), % 0 to 0.6
0 to 0.5
Lead (Pb), % 1.5 to 3.8
0
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0
0.6 to 1.2
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.050
0 to 0.45
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0.7 to 2.0
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 20 to 27
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15