MakeItFrom.com
Menu (ESC)

C85200 Brass vs. EN 1.4107 Stainless Steel

C85200 brass belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85200 brass and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 28
18 to 21
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 270
620 to 700
Tensile Strength: Yield (Proof), MPa 95
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 140
740
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 930
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 19
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 26
7.5
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.1
Embodied Energy, MJ/kg 46
30
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 42
420 to 840
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.9
22 to 25
Strength to Weight: Bending, points 11
21 to 22
Thermal Diffusivity, mm2/s 27
7.2
Thermal Shock Resistance, points 9.3
22 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 70 to 74
0 to 0.3
Iron (Fe), % 0 to 0.6
83.8 to 87.2
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
0.8 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.020
Tin (Sn), % 0.7 to 2.0
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 20 to 27
0
Residuals, % 0 to 0.9
0