MakeItFrom.com
Menu (ESC)

C85200 Brass vs. EN 1.7729 Steel

C85200 brass belongs to the copper alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85200 brass and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 28
17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 270
910
Tensile Strength: Yield (Proof), MPa 95
750

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
430
Melting Completion (Liquidus), °C 940
1470
Melting Onset (Solidus), °C 930
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
3.8
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 46
49
Embodied Water, L/kg 330
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
150
Resilience: Unit (Modulus of Resilience), kJ/m3 42
1500
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 8.9
32
Strength to Weight: Bending, points 11
27
Thermal Diffusivity, mm2/s 27
11
Thermal Shock Resistance, points 9.3
27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.015 to 0.080
Antimony (Sb), % 0 to 0.2
0
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 70 to 74
0 to 0.2
Iron (Fe), % 0 to 0.6
94.8 to 97
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.050
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0.7 to 2.0
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 20 to 27
0
Residuals, % 0 to 0.9
0