MakeItFrom.com
Menu (ESC)

C85200 Brass vs. N08811 Stainless Steel

C85200 brass belongs to the copper alloys classification, while N08811 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85200 brass and the bottom bar is N08811 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 28
33
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 270
510
Tensile Strength: Yield (Proof), MPa 95
190

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 940
1390
Melting Onset (Solidus), °C 930
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
12
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 2.8
5.3
Embodied Energy, MJ/kg 46
76
Embodied Water, L/kg 330
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
130
Resilience: Unit (Modulus of Resilience), kJ/m3 42
94
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 8.9
18
Strength to Weight: Bending, points 11
18
Thermal Diffusivity, mm2/s 27
3.0
Thermal Shock Resistance, points 9.3
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.15 to 0.6
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 70 to 74
0 to 0.75
Iron (Fe), % 0 to 0.6
39.5 to 50.6
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 1.0
30 to 35
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 0.7 to 2.0
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 20 to 27
0
Residuals, % 0 to 0.9
0