MakeItFrom.com
Menu (ESC)

C85200 Brass vs. S82441 Stainless Steel

C85200 brass belongs to the copper alloys classification, while S82441 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85200 brass and the bottom bar is S82441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 28
28
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 270
760
Tensile Strength: Yield (Proof), MPa 95
550

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
1090
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 930
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
16
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 46
45
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
190
Resilience: Unit (Modulus of Resilience), kJ/m3 42
740
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.9
27
Strength to Weight: Bending, points 11
24
Thermal Diffusivity, mm2/s 27
3.9
Thermal Shock Resistance, points 9.3
21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 70 to 74
0.1 to 0.8
Iron (Fe), % 0 to 0.6
62.6 to 70.2
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 1.0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.050
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.0050
Tin (Sn), % 0.7 to 2.0
0
Zinc (Zn), % 20 to 27
0
Residuals, % 0 to 0.9
0