MakeItFrom.com
Menu (ESC)

C85400 Brass vs. ASTM A229 Spring Steel

C85400 brass belongs to the copper alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
490 to 550
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 23
14
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 220
1690 to 1890
Tensile Strength: Yield (Proof), MPa 85
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 940
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 89
50
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 46
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 35
3260 to 4080
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 7.5
60 to 67
Strength to Weight: Bending, points 9.9
40 to 43
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 7.6
54 to 60

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0
0.55 to 0.85
Copper (Cu), % 65 to 70
0
Iron (Fe), % 0 to 0.7
97.5 to 99
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0.3 to 1.2
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 24 to 32
0
Residuals, % 0 to 1.1
0