MakeItFrom.com
Menu (ESC)

C85400 Brass vs. S32205 Stainless Steel

C85400 brass belongs to the copper alloys classification, while S32205 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
260
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 23
28
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 220
740
Tensile Strength: Yield (Proof), MPa 85
510

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1070
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 940
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 89
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
18
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 46
50
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
190
Resilience: Unit (Modulus of Resilience), kJ/m3 35
630
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 7.5
26
Strength to Weight: Bending, points 9.9
23
Thermal Diffusivity, mm2/s 28
4.0
Thermal Shock Resistance, points 7.6
20

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 23
Copper (Cu), % 65 to 70
0
Iron (Fe), % 0 to 0.7
63.7 to 70.4
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 1.0
4.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 24 to 32
0
Residuals, % 0 to 1.1
0