MakeItFrom.com
Menu (ESC)

C85400 Brass vs. S44625 Stainless Steel

C85400 brass belongs to the copper alloys classification, while S44625 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85400 brass and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 23
22
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 220
590
Tensile Strength: Yield (Proof), MPa 85
360

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 940
1440
Melting Onset (Solidus), °C 940
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 89
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 25
14
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 46
39
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
110
Resilience: Unit (Modulus of Resilience), kJ/m3 35
310
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 7.5
21
Strength to Weight: Bending, points 9.9
20
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 7.6
19

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 65 to 70
0 to 0.2
Iron (Fe), % 0 to 0.7
69.4 to 74.3
Lead (Pb), % 1.5 to 3.8
0
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 1.0
0 to 0.5
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.050
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 24 to 32
0
Residuals, % 0 to 1.1
0