MakeItFrom.com
Menu (ESC)

C85500 Brass vs. AISI 431 Stainless Steel

C85500 brass belongs to the copper alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85500 brass and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
250
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
15 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 410
890 to 1380
Tensile Strength: Yield (Proof), MPa 160
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
850
Melting Completion (Liquidus), °C 900
1510
Melting Onset (Solidus), °C 890
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 46
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1270 to 2770
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
32 to 50
Strength to Weight: Bending, points 15
27 to 36
Thermal Diffusivity, mm2/s 38
7.0
Thermal Shock Resistance, points 14
28 to 43

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.2
78.2 to 83.8
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 0.2
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 35.1 to 41
0
Residuals, % 0 to 0.9
0