MakeItFrom.com
Menu (ESC)

C85500 Brass vs. ASTM A387 Grade 2 Steel

C85500 brass belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85500 brass and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
140 to 170
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 410
470 to 550
Tensile Strength: Yield (Proof), MPa 160
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
420
Melting Completion (Liquidus), °C 900
1470
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.6
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 46
20
Embodied Water, L/kg 320
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180 to 320
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14
16 to 20
Strength to Weight: Bending, points 15
17 to 19
Thermal Diffusivity, mm2/s 38
12
Thermal Shock Resistance, points 14
14 to 16

Alloy Composition

Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.2
97.1 to 98.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.2
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 35.1 to 41
0
Residuals, % 0 to 0.9
0