MakeItFrom.com
Menu (ESC)

C85500 Brass vs. EN 1.1181 Steel

C85500 brass belongs to the copper alloys classification, while EN 1.1181 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85500 brass and the bottom bar is EN 1.1181 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
19 to 20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 410
560 to 620
Tensile Strength: Yield (Proof), MPa 160
280 to 380

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
42
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 46
19
Embodied Water, L/kg 320
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
210 to 380
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14
20 to 22
Strength to Weight: Bending, points 15
19 to 21
Thermal Diffusivity, mm2/s 38
11
Thermal Shock Resistance, points 14
19 to 21

Alloy Composition

Carbon (C), % 0
0.32 to 0.39
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.2
97.4 to 99.18
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.2
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.2
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 35.1 to 41
0
Residuals, % 0 to 0.9
0