MakeItFrom.com
Menu (ESC)

C85500 Brass vs. EN 1.4646 Stainless Steel

C85500 brass belongs to the copper alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C85500 brass and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
220
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 410
750
Tensile Strength: Yield (Proof), MPa 160
430

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
910
Melting Completion (Liquidus), °C 900
1390
Melting Onset (Solidus), °C 890
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
460
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
27
Strength to Weight: Bending, points 15
24
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 59 to 63
1.5 to 3.0
Iron (Fe), % 0 to 0.2
59 to 67.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.2
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 35.1 to 41
0
Residuals, % 0 to 0.9
0