MakeItFrom.com
Menu (ESC)

C85500 Brass vs. S41045 Stainless Steel

C85500 brass belongs to the copper alloys classification, while S41045 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85500 brass and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
160
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
25
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 55
70
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 410
430
Tensile Strength: Yield (Proof), MPa 160
230

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
29
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 46
31
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
92
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
16
Strength to Weight: Bending, points 15
16
Thermal Diffusivity, mm2/s 38
7.8
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 13
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.2
83.8 to 88
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 0.2
0 to 0.5
Niobium (Nb), % 0
0 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 35.1 to 41
0
Residuals, % 0 to 0.9
0