MakeItFrom.com
Menu (ESC)

C85500 Brass vs. S44627 Stainless Steel

C85500 brass belongs to the copper alloys classification, while S44627 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85500 brass and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
24
Poisson's Ratio 0.31
0.27
Rockwell B Hardness 55
79
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 410
490
Tensile Strength: Yield (Proof), MPa 160
300

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 120
220
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
18
Strength to Weight: Bending, points 15
18
Thermal Diffusivity, mm2/s 38
4.6
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 59 to 63
0 to 0.2
Iron (Fe), % 0 to 0.2
69.2 to 74.2
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0 to 0.2
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 0.2
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 35.1 to 41
0
Residuals, % 0 to 0.9
0