MakeItFrom.com
Menu (ESC)

C85700 Brass vs. AISI 310HCb Stainless Steel

C85700 brass belongs to the copper alloys classification, while AISI 310HCb stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 310
590
Tensile Strength: Yield (Proof), MPa 110
230

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 940
1410
Melting Onset (Solidus), °C 910
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.8
Embodied Energy, MJ/kg 47
69
Embodied Water, L/kg 330
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
210
Resilience: Unit (Modulus of Resilience), kJ/m3 59
130
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11
21
Strength to Weight: Bending, points 13
20
Thermal Diffusivity, mm2/s 27
3.9
Thermal Shock Resistance, points 10
13

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
48 to 57
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.050
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0