MakeItFrom.com
Menu (ESC)

C85700 Brass vs. EN 1.0225 Steel

C85700 brass belongs to the copper alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
6.7 to 24
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 310
440 to 500
Tensile Strength: Yield (Proof), MPa 110
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 910
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
52
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 25
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 59
140 to 390
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 11
16 to 18
Strength to Weight: Bending, points 13
16 to 18
Thermal Diffusivity, mm2/s 27
14
Thermal Shock Resistance, points 10
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.21
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
98 to 100
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.4
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.050
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0