MakeItFrom.com
Menu (ESC)

C85700 Brass vs. EN 1.4110 Stainless Steel

C85700 brass belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 14
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 310
770 to 1720
Tensile Strength: Yield (Proof), MPa 110
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
790
Melting Completion (Liquidus), °C 940
1440
Melting Onset (Solidus), °C 910
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 25
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
8.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 47
33
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 59
480 to 4550
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11
28 to 62
Strength to Weight: Bending, points 13
24 to 41
Thermal Diffusivity, mm2/s 27
8.1
Thermal Shock Resistance, points 10
27 to 60

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
81.4 to 86
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0