MakeItFrom.com
Menu (ESC)

C85700 Brass vs. EN 1.4640 Stainless Steel

C85700 brass belongs to the copper alloys classification, while EN 1.4640 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is EN 1.4640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
51
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 310
620 to 650
Tensile Strength: Yield (Proof), MPa 110
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 940
1420
Melting Onset (Solidus), °C 910
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
250 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 59
150 to 170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11
22 to 23
Strength to Weight: Bending, points 13
21
Thermal Diffusivity, mm2/s 27
4.0
Thermal Shock Resistance, points 10
14 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 58 to 64
1.3 to 2.0
Iron (Fe), % 0 to 0.7
67.4 to 73.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
1.5 to 4.0
Nickel (Ni), % 0 to 1.0
5.5 to 6.9
Nitrogen (N), % 0
0.030 to 0.11
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0