MakeItFrom.com
Menu (ESC)

C85700 Brass vs. EN 1.4941 Stainless Steel

C85700 brass belongs to the copper alloys classification, while EN 1.4941 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 310
590
Tensile Strength: Yield (Proof), MPa 110
210

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
940
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 910
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
180
Resilience: Unit (Modulus of Resilience), kJ/m3 59
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11
21
Strength to Weight: Bending, points 13
20
Thermal Diffusivity, mm2/s 27
4.3
Thermal Shock Resistance, points 10
13

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
65.1 to 73.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
9.0 to 12
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Titanium (Ti), % 0
0.4 to 0.8
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0