MakeItFrom.com
Menu (ESC)

C85700 Brass vs. SAE-AISI 1065 Steel

C85700 brass belongs to the copper alloys classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 310
710 to 780
Tensile Strength: Yield (Proof), MPa 110
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 910
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
51
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
11
Electrical Conductivity: Equal Weight (Specific), % IACS 25
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 59
490 to 820
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 11
25 to 28
Strength to Weight: Bending, points 13
23 to 24
Thermal Diffusivity, mm2/s 27
14
Thermal Shock Resistance, points 10
25 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0.6 to 0.7
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
98.3 to 98.8
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0