MakeItFrom.com
Menu (ESC)

C85700 Brass vs. C96400 Copper-nickel

Both C85700 brass and C96400 copper-nickel are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 62% of their average alloy composition in common.

For each property being compared, the top bar is C85700 brass and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
140
Elongation at Break, % 17
25
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
51
Tensile Strength: Ultimate (UTS), MPa 310
490
Tensile Strength: Yield (Proof), MPa 110
260

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
260
Melting Completion (Liquidus), °C 940
1240
Melting Onset (Solidus), °C 910
1170
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 84
28
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 25
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
45
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.9
Embodied Energy, MJ/kg 47
87
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
100
Resilience: Unit (Modulus of Resilience), kJ/m3 59
250
Stiffness to Weight: Axial, points 7.2
8.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 11
15
Strength to Weight: Bending, points 13
16
Thermal Diffusivity, mm2/s 27
7.8
Thermal Shock Resistance, points 10
17

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 58 to 64
62.3 to 71.3
Iron (Fe), % 0 to 0.7
0.25 to 1.5
Lead (Pb), % 0.8 to 1.5
0 to 0.010
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 1.0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
0
Residuals, % 0
0 to 0.5