MakeItFrom.com
Menu (ESC)

C85700 Brass vs. N07716 Nickel

C85700 brass belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
34
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 310
860
Tensile Strength: Yield (Proof), MPa 110
350

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 940
1480
Melting Onset (Solidus), °C 910
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 84
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 25
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
75
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 2.8
13
Embodied Energy, MJ/kg 47
190
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
240
Resilience: Unit (Modulus of Resilience), kJ/m3 59
300
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 11
28
Strength to Weight: Bending, points 13
24
Thermal Diffusivity, mm2/s 27
2.8
Thermal Shock Resistance, points 10
24

Alloy Composition

Aluminum (Al), % 0 to 0.8
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
0 to 11.3
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 1.0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.050
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.5
0
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0