MakeItFrom.com
Menu (ESC)

C85700 Brass vs. S15500 Stainless Steel

C85700 brass belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
6.8 to 16
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 310
890 to 1490
Tensile Strength: Yield (Proof), MPa 110
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
820
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 910
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 59
890 to 4460
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11
32 to 53
Strength to Weight: Bending, points 13
26 to 37
Thermal Diffusivity, mm2/s 27
4.6
Thermal Shock Resistance, points 10
30 to 50

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 58 to 64
2.5 to 4.5
Iron (Fe), % 0 to 0.7
71.9 to 79.9
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0