MakeItFrom.com
Menu (ESC)

C85700 Brass vs. S44660 Stainless Steel

C85700 brass belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85700 brass and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 17
20
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 310
660
Tensile Strength: Yield (Proof), MPa 110
510

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 910
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
21
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 47
61
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
120
Resilience: Unit (Modulus of Resilience), kJ/m3 59
640
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11
24
Strength to Weight: Bending, points 13
22
Thermal Diffusivity, mm2/s 27
4.5
Thermal Shock Resistance, points 10
21

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.7
60.4 to 71
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 1.0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 32 to 40
0
Residuals, % 0 to 1.3
0