MakeItFrom.com
Menu (ESC)

C85800 Brass vs. 8021 Aluminum

C85800 brass belongs to the copper alloys classification, while 8021 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C85800 brass and the bottom bar is 8021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 15
2.3
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 380
160
Tensile Strength: Yield (Proof), MPa 210
130

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
650
Melting Onset (Solidus), °C 870
640
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 84
220
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
56
Electrical Conductivity: Equal Weight (Specific), % IACS 22
180

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.0
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.1
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
3.4
Resilience: Unit (Modulus of Resilience), kJ/m3 210
130
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
49
Strength to Weight: Axial, points 13
16
Strength to Weight: Bending, points 15
23
Thermal Diffusivity, mm2/s 27
88
Thermal Shock Resistance, points 13
7.0

Alloy Composition

Aluminum (Al), % 0 to 0.55
98 to 98.8
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 57 to 69
0 to 0.050
Iron (Fe), % 0 to 0.5
1.2 to 1.7
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0 to 0.15
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0
0 to 0.15