MakeItFrom.com
Menu (ESC)

C85800 Brass vs. ACI-ASTM CE8MN Steel

C85800 brass belongs to the copper alloys classification, while ACI-ASTM CE8MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is ACI-ASTM CE8MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
29
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 380
750
Tensile Strength: Yield (Proof), MPa 210
500

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
21
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.2
Embodied Energy, MJ/kg 47
58
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
190
Resilience: Unit (Modulus of Resilience), kJ/m3 210
620
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
27
Strength to Weight: Bending, points 15
23
Thermal Diffusivity, mm2/s 27
4.2
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
22.5 to 25.5
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
56 to 66.4
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0 to 0.5
8.0 to 11
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.5
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0