MakeItFrom.com
Menu (ESC)

C85800 Brass vs. AISI 317LN Stainless Steel

C85800 brass belongs to the copper alloys classification, while AISI 317LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is AISI 317LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
45
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 56
84
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 380
620
Tensile Strength: Yield (Proof), MPa 210
270

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1010
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
14
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
21
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 47
59
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
220
Resilience: Unit (Modulus of Resilience), kJ/m3 210
190
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
22
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 27
3.9
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
57.9 to 67.9
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
11 to 15
Nitrogen (N), % 0
0.1 to 0.22
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0