MakeItFrom.com
Menu (ESC)

C85800 Brass vs. AISI 420 Stainless Steel

C85800 brass belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15
8.0 to 15
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 56
84
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 380
690 to 1720
Tensile Strength: Yield (Proof), MPa 210
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
620
Melting Completion (Liquidus), °C 900
1510
Melting Onset (Solidus), °C 870
1450
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 22
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
7.5
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 47
28
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 210
380 to 4410
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
25 to 62
Strength to Weight: Bending, points 15
22 to 41
Thermal Diffusivity, mm2/s 27
7.3
Thermal Shock Resistance, points 13
25 to 62

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
82.3 to 87.9
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.75
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0