MakeItFrom.com
Menu (ESC)

C85800 Brass vs. ASTM A387 Grade 5 Steel

C85800 brass belongs to the copper alloys classification, while ASTM A387 grade 5 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is ASTM A387 grade 5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15
20 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 380
500 to 600
Tensile Strength: Yield (Proof), MPa 210
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
510
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 22
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
4.3
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 47
23
Embodied Water, L/kg 330
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
140 to 320
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
18 to 21
Strength to Weight: Bending, points 15
18 to 20
Thermal Diffusivity, mm2/s 27
11
Thermal Shock Resistance, points 13
14 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
92.1 to 95.3
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0