MakeItFrom.com
Menu (ESC)

C85800 Brass vs. ASTM Grade HD Steel

C85800 brass belongs to the copper alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
9.1
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 380
590
Tensile Strength: Yield (Proof), MPa 210
270

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1410
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 84
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
17
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
44
Resilience: Unit (Modulus of Resilience), kJ/m3 210
180
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 13
21
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 27
4.3
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
58.4 to 70
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
4.0 to 7.0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0