MakeItFrom.com
Menu (ESC)

C85800 Brass vs. EN 1.4104 Stainless Steel

C85800 brass belongs to the copper alloys classification, while EN 1.4104 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is EN 1.4104 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
11 to 23
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 380
630 to 750
Tensile Strength: Yield (Proof), MPa 210
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
860
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
8.5
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 47
30
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 210
310 to 800
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
23 to 27
Strength to Weight: Bending, points 15
21 to 24
Thermal Diffusivity, mm2/s 27
6.7
Thermal Shock Resistance, points 13
22 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
78.8 to 84.1
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.6
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.050
0.15 to 0.35
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0