MakeItFrom.com
Menu (ESC)

C85800 Brass vs. EN 1.4618 Stainless Steel

C85800 brass belongs to the copper alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
51
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 380
680 to 700
Tensile Strength: Yield (Proof), MPa 210
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
900
Melting Completion (Liquidus), °C 900
1400
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 210
160 to 170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
24 to 25
Strength to Weight: Bending, points 15
22 to 23
Thermal Diffusivity, mm2/s 27
4.0
Thermal Shock Resistance, points 13
15 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 57 to 69
1.0 to 2.5
Iron (Fe), % 0 to 0.5
62.7 to 72.5
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
5.5 to 9.5
Nickel (Ni), % 0 to 0.5
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.010
0 to 0.070
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0