MakeItFrom.com
Menu (ESC)

C85800 Brass vs. EN 1.4877 Stainless Steel

C85800 brass belongs to the copper alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
36
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 380
630
Tensile Strength: Yield (Proof), MPa 210
200

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1150
Melting Completion (Liquidus), °C 900
1400
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 84
12
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
37
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.2
Embodied Energy, MJ/kg 47
89
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13
22
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 27
3.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0 to 0.55
0 to 0.025
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
36.4 to 42.3
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0 to 0.5
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.3
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0