MakeItFrom.com
Menu (ESC)

C85800 Brass vs. SAE-AISI M36 Steel

C85800 brass belongs to the copper alloys classification, while SAE-AISI M36 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is SAE-AISI M36 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 380
810 to 2190

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Melting Completion (Liquidus), °C 900
1600
Melting Onset (Solidus), °C 870
1550
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 84
19
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
38
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 2.8
9.5
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 330
140

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 13
27 to 72
Strength to Weight: Bending, points 15
23 to 44
Thermal Diffusivity, mm2/s 27
5.1
Thermal Shock Resistance, points 13
25 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.8 to 0.9
Chromium (Cr), % 0
3.8 to 4.5
Cobalt (Co), % 0
7.8 to 8.8
Copper (Cu), % 57 to 69
0 to 0.25
Iron (Fe), % 0 to 0.5
70.1 to 75.5
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0.15 to 0.4
Molybdenum (Mo), % 0
4.6 to 5.5
Nickel (Ni), % 0 to 0.5
0 to 0.3
Phosphorus (P), % 0 to 0.010
0 to 0.030
Silicon (Si), % 0 to 0.25
0.2 to 0.45
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Tungsten (W), % 0
5.5 to 6.5
Vanadium (V), % 0
1.8 to 2.3
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0