MakeItFrom.com
Menu (ESC)

C85800 Brass vs. Type 3 Niobium

C85800 brass belongs to the copper alloys classification, while Type 3 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is Type 3 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 15
23
Poisson's Ratio 0.31
0.4
Shear Modulus, GPa 40
38
Tensile Strength: Ultimate (UTS), MPa 380
220
Tensile Strength: Yield (Proof), MPa 210
140

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Specific Heat Capacity, J/kg-K 380
270
Thermal Conductivity, W/m-K 84
42
Thermal Expansion, µm/m-K 20
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.0
8.6
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
44
Resilience: Unit (Modulus of Resilience), kJ/m3 210
93
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 13
7.2
Strength to Weight: Bending, points 15
9.5
Thermal Diffusivity, mm2/s 27
18
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 57 to 69
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 0.5
0 to 0.0050
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0
Molybdenum (Mo), % 0
0 to 0.010
Nickel (Ni), % 0 to 0.5
0 to 0.0050
Niobium (Nb), % 0
98.6 to 99.2
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0 to 0.0050
Sulfur (S), % 0 to 0.050
0
Tantalum (Ta), % 0
0 to 0.1
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.030
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0
0.8 to 1.2
Residuals, % 0 to 1.3
0