MakeItFrom.com
Menu (ESC)

C85800 Brass vs. C26000 Brass

Both C85800 brass and C26000 brass are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is C26000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 15
2.5 to 66
Poisson's Ratio 0.31
0.31
Rockwell B Hardness 56
53 to 93
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 380
320 to 680
Tensile Strength: Yield (Proof), MPa 210
110 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 120
140
Melting Completion (Liquidus), °C 900
950
Melting Onset (Solidus), °C 870
920
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 84
120
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
28
Electrical Conductivity: Equal Weight (Specific), % IACS 22
31

Otherwise Unclassified Properties

Base Metal Price, % relative 24
25
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
6.1 to 420
Resilience: Unit (Modulus of Resilience), kJ/m3 210
51 to 1490
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 13
11 to 23
Strength to Weight: Bending, points 15
13 to 21
Thermal Diffusivity, mm2/s 27
38
Thermal Shock Resistance, points 13
11 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Bismuth (Bi), % 0
0 to 0.0059
Copper (Cu), % 57 to 69
68.5 to 71.5
Iron (Fe), % 0 to 0.5
0 to 0.050
Lead (Pb), % 0 to 1.5
0 to 0.070
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
28.1 to 31.5
Residuals, % 0
0 to 0.3