MakeItFrom.com
Menu (ESC)

C85800 Brass vs. C49300 Brass

Both C85800 brass and C49300 brass are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 15
4.5 to 20
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 380
430 to 520
Tensile Strength: Yield (Proof), MPa 210
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 900
880
Melting Onset (Solidus), °C 870
840
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 84
88
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
15
Electrical Conductivity: Equal Weight (Specific), % IACS 22
17

Otherwise Unclassified Properties

Base Metal Price, % relative 24
26
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 47
50
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 210
220 to 800
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 13
15 to 18
Strength to Weight: Bending, points 15
16 to 18
Thermal Diffusivity, mm2/s 27
29
Thermal Shock Resistance, points 13
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.55
0 to 0.5
Antimony (Sb), % 0 to 0.050
0 to 0.5
Arsenic (As), % 0 to 0.050
0
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 57 to 69
58 to 62
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0 to 1.5
0 to 0.010
Manganese (Mn), % 0 to 0.25
0 to 0.030
Nickel (Ni), % 0 to 0.5
0 to 1.5
Phosphorus (P), % 0 to 0.010
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.25
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
1.0 to 1.8
Zinc (Zn), % 31 to 41
30.6 to 40.5
Residuals, % 0
0 to 0.5