MakeItFrom.com
Menu (ESC)

C85800 Brass vs. C75700 Nickel Silver

Both C85800 brass and C75700 nickel silver are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is C75700 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 15
3.2 to 22
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 380
590 to 610
Tensile Strength: Yield (Proof), MPa 210
470 to 580

Thermal Properties

Latent Heat of Fusion, J/g 170
200
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
1040
Melting Onset (Solidus), °C 870
990
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 84
40
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 22
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 47
56
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 210
930 to 1410
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 13
19 to 20
Strength to Weight: Bending, points 15
19
Thermal Diffusivity, mm2/s 27
12
Thermal Shock Resistance, points 13
22 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Copper (Cu), % 57 to 69
63.5 to 66.5
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0 to 1.5
0 to 0.050
Manganese (Mn), % 0 to 0.25
0 to 0.5
Nickel (Ni), % 0 to 0.5
11 to 13
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
19.2 to 25.5
Residuals, % 0
0 to 0.5