MakeItFrom.com
Menu (ESC)

C85800 Brass vs. S31100 Stainless Steel

C85800 brass belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
4.5
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 380
1000
Tensile Strength: Yield (Proof), MPa 210
710

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 47
44
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
40
Resilience: Unit (Modulus of Resilience), kJ/m3 210
1240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
36
Strength to Weight: Bending, points 15
29
Thermal Diffusivity, mm2/s 27
4.2
Thermal Shock Resistance, points 13
28

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
63.6 to 69
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0 to 0.5
6.0 to 7.0
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0