MakeItFrom.com
Menu (ESC)

C85800 Brass vs. S35315 Stainless Steel

C85800 brass belongs to the copper alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
46
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 56
82
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 380
740
Tensile Strength: Yield (Proof), MPa 210
300

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1370
Melting Onset (Solidus), °C 870
1330
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
34
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.7
Embodied Energy, MJ/kg 47
81
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
270
Resilience: Unit (Modulus of Resilience), kJ/m3 210
230
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
26
Strength to Weight: Bending, points 15
23
Thermal Diffusivity, mm2/s 27
3.1
Thermal Shock Resistance, points 13
17

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
33.6 to 40.6
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Nickel (Ni), % 0 to 0.5
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
1.2 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0