MakeItFrom.com
Menu (ESC)

C85800 Brass vs. S43932 Stainless Steel

C85800 brass belongs to the copper alloys classification, while S43932 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
25
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 56
78
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 380
460
Tensile Strength: Yield (Proof), MPa 210
230

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
890
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
23
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 22
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
96
Resilience: Unit (Modulus of Resilience), kJ/m3 210
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
17
Strength to Weight: Bending, points 15
17
Thermal Diffusivity, mm2/s 27
6.3
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0 to 0.55
0 to 0.15
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
76.7 to 83
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Titanium (Ti), % 0
0.2 to 0.75
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0