MakeItFrom.com
Menu (ESC)

C85800 Brass vs. S81921 Stainless Steel

C85800 brass belongs to the copper alloys classification, while S81921 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C85800 brass and the bottom bar is S81921 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 15
29
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 380
710
Tensile Strength: Yield (Proof), MPa 210
500

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210
630
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
25
Strength to Weight: Bending, points 15
23
Thermal Diffusivity, mm2/s 27
4.0
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 0 to 0.55
0
Antimony (Sb), % 0 to 0.050
0
Arsenic (As), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 57 to 69
0
Iron (Fe), % 0 to 0.5
66.7 to 75.9
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.25
2.0 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.5
2.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Residuals, % 0 to 1.3
0