MakeItFrom.com
Menu (ESC)

C85900 Brass vs. AISI 302 Stainless Steel

C85900 brass belongs to the copper alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170 to 440
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 30
4.5 to 46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 460
580 to 1430
Tensile Strength: Yield (Proof), MPa 190
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 130
710
Melting Completion (Liquidus), °C 830
1420
Melting Onset (Solidus), °C 790
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 89
16
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
15
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140 to 3070
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 16
21 to 51
Strength to Weight: Bending, points 17
20 to 36
Thermal Diffusivity, mm2/s 29
4.4
Thermal Shock Resistance, points 16
12 to 31

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.5
67.9 to 75
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 2.0
Nickel (Ni), % 0 to 1.5
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.7
0