MakeItFrom.com
Menu (ESC)

C85900 Brass vs. ASTM Grade LCA Steel

C85900 brass belongs to the copper alloys classification, while ASTM grade LCA steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C85900 brass and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 30
27
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 460
500
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
49
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 29
14
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0.1 to 0.6
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 58 to 62
0 to 0.3
Iron (Fe), % 0 to 0.5
96.9 to 100
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0.1 to 0.65
0 to 0.045
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 31 to 41
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 1.0